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Supplementary Material 1: Mueller matrix and the related polarisation properties. 

 

Either a Jones matrix (JM) or a Mueller matrix (MM) can be used to describe the vectorial optical properties of an object 

1-3. While the JM contains the information of absolute phase, it cannot represent depolarising effects of objects. The MM 

however can represent depolarisation, but not the overall phase1-3. Hence, the MM is used if comprehensive polarisation 

properties need to be considered. The MM is a 4 by 4 matrix, so consists of 16 elements (𝑚"#; 𝑘, 𝑙 = 1,2,3,4). Among 

those elements, m11 represents the change in intensity, and the other 15 elements encode the vectorial properties of the 

object1-3. The relationship between the physical quantities like retardance and these separate MM elements is often 

ambiguous1-3.  

 

Numerous decomposition methods have been put forward4-6 to extract different polarisation parameters from the MM. 

These include linear/circular polarisance, linear/circular diattenuation, linear/circular retardance, and linear/circular 

depolarisation4-6. The various widely-used decomposition methods include: MM polar decomposition4, MM 

transformation parameters5, and MM anisotropic coefficients6. However, those approaches are based on different 

assumptions such as matrix reciprocity4, therefore they suffer intrinsic limitations in revealing the relationship to the real 

physical structure of a specimen – the extracted information is inherently biased to the assumed mathematical structure 

(some methods are shown in Supplementary Material 3). In the main article, we focus on the vectorial information 

decomposed from the MM that relate to the determined physical information.  We refer to these quantities as “vectorial 

metrics”, as further detailed in Supplementary Material 2. 

 

Supplementary Figure S1 shows a general MM and demonstrates several encoded polarisation properties. Three typical 

MMs are illustrated here: an arbitrary wave plate (described by parameters of retardance and axis orientation), an 

arbitrary polariser (described by parameters diattenuation and axis orientation), and an arbitrary depolariser (described 

by the parameter of depolarisation). These are shown in Ref3. For a waveplate, the parameter set (𝛿, 𝜃, 𝜀) represents the 

retardance value 𝛿, fast axis orientation 𝜃, and the latitude parameter 𝜀 (−π/2 ≤ 𝜀 ≤ π/2) that determines the shape of 

the ellipse. In a polariser, the parameter set (𝜃, 𝜀) encodes the transmission of a state of polarisation (SOP) with the 



major axis of the ellipse oriented at 𝜃 located at latitude 𝜀 on the Poincaré sphere, where −π/2 ≤ 𝜀 ≤ π/2. In a 

depolariser, there exist six degrees of freedom; they are −1 ≤ 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ≤ 1, and the corresponding MM is in a 

symmetric format. Note that such comprehensive polarisation properties can only be extracted via a MM (or from a JM 

when the medium exhibits no depolarisation), while such full properties are not accessible by other optical measurement 

approaches3. 

 

 

 

𝑀=>?@# = 𝑀? …𝑀BCD ∙ 𝑀B …𝑀F ∙ 𝑀D, 

 

(1-1) 

 

Eq. (1-1) models the mixed polarisation properties of a complex system MFinal, where the system is assumed to have n 

layers, and Mm represents an arbitrary layer inside such system.  

 

 

Supplementary Figure S1. MM and the encoded information. There are several fundamental polarisation properties that can be 

extracted via the MM, such as linear/circular diattenuation, linear/circular retardance, and so on. There fundamental optical properties 

manipulate the light vector along propagation direction z in different format with respect to different eigenbases. They are partially 

demonstrated, where ‘before’ and ‘after’ illustrate the amplitude and/or phase change of the determined eigenvectors. 

 



 

Supplementary Material 2: Four vectorial metrics of Mueller matrix 

 

As we have explained in previous note, the widely adopted MM decomposition methods require different assumptions4-6. 

However, there indeed exist vectorial representations whose values are related to physical phenomena that are valid only 

when specific physical conditions occur (such as for certain multi-layered systems)3,6-9.  

 

We refer to such representations throughout this paper as ‘vectorial metrics’, as they reveal certain unique vectorial 

information. In the main article, we summarised a unified presentation of the metric ∆ (first equation) to illustrate the 

useful quantities extracted from symmetrical or asymmetrical properties of the MM. Furthermore, we explained the how 

the inference network affects the scope of interpretation of ∆, which is related to information about layered structures in 

the specimen that can be extracted via the metrics. For instance, if we found the metric values were all zero, we would 

not be able to determine whether or not such a system is single-layered. As general examples of this scope, we find that 

certain single-layered structures can infer a zero-valued ∆, whereas the presence of certain multi-layered structures can 

be inferred through a non-zero value of the ∆. Note that for simplicity in this paper, we confine the scope to single 

layered systems that are described by a linear, rather than elliptical, eigen basis10. For similar reasons, we confine our 

considerations of depolarisation to homogeneous depolarisation as a single layer10.  This covers the majority of realistic 

scenarios and does not preclude extension of the approach to more general cases in later research. 

 

In this note, we detail the four metrics that are used in main article. Supplementary Figures S2a, S2b, S2c and S2d give 

an overview of the four metrics. Those metrics reveal different physical characteristics of the original complex system 

using asymmetric properties of the elements of the MM. Such information only exists when the system is complex, in 

the sense that it consists of multiple layers3,7-9, as represented by Eq. (1-1). Note that theoretical studies of related 

parameters have been investigated before with amplification3,7-9, but they have not yet been summarised into a unified 

structure, or been put to broad practical use. We summarise metric 1, metric 2, metric 3 and metric 4 in Eq. (2-1) to Eq. 

(2-4), to act as different quantitative criteria for characterizing vectorial properties in various applications.  

 



Metric 1 is defined as  

 

 

 

		MD = 𝑚FJ −𝑚JF , 

 

(2-1) 

 

which relates to the asymmetry between diagonally opposed elements 𝑚FJ and 𝑚JF. If this asymmetry exists, it shows 

that it is a multi-layered complex system that includes circular retardance7 (see Supplementary Figure S2a). For the 

GRIN lens case (a non-depolarised system) used in the main text, a non-zero M1 gradient reflects the existence of 

circular birefringence gradient in a linear retarder assembly when it is obliquely illuminated. The presence of circular 

birefringence gradient also validates the existence of spin-Hall effect of the light in this system.  

 

Metric 2 is defined as  

  

 MF = K(𝑚DF
F + 𝑚DJ

F ) − K(𝑚FD
F + 𝑚JD

F ), 

 

(2-2) 

 

which represents a different MM asymmetry, relating to polarisance and diattenuation. A non-zero value of M2 indicates 

the presence of a multi-layered complex system that includes polarisance and diattenuation. If M2>0, the diattenuation is 

stronger than polarisance in the system, and if M2<0, the polarisance is stronger than diattenuation3,9. Assuming we have 

ideal components, those properties determined by the sign of metric 2 can be equivalently treated as a depolariser 

followed by a diattenuator (or in reversed order)3,9 (see Supplementary Material 6). Typically, when either 

K(𝑚FD
F +𝑚JD

F ) or K(𝑚DF
F +𝑚DJ

F ) equals to zero, such metric means the existence of polarisance but no diattanuation or 

vice versa3,9 (see details in Supplementary Figure S2b);  

 

Metric 3 is defined as  

 

                       MJ = K(𝑚MF
F + 𝑚MJ

F ) − K(𝑚FM
F + 𝑚JM

F ), 

 

(2-3) 

 



which represents a MM asymmetry relating to multiple retarders7,8. A non-zero value of M3 supports the presence of a 

multi-layered complex system that includes multi-layered retardance structure. Note in the demonstration for metric 3 

throughout this paper, our analysis was based on the prior knowledge that scattering and intrinsic stress both exist in 

fused silica based waveguide systems. Hence, for this fabrication process specifically, this metric can act as an optimiser 

to balance two types of the retardance with respect to the changing writing parameters (see Supplementary Materials 5 

and 9). 

    

Metric 4 is defined as 

  

MM = 𝑚DM −𝑚MD, 

 

(2-4) 

 

which relates to the asymmetry between diagonally opposed elements 𝑚DM and 𝑚MD. A non-zero value of M4 represents 

the difference between linear retardance and linear diattenuation (details see Ref7), which indicates the presence of a 

multi-layered complex system. Specifically, if 𝑚MD = 0 but 𝑚DM ≠ 0, it shows a double-layered system in which the first 

layer is a retarder and the second layer is a diattenuator; while for 𝑚MD ≠ 0 but 𝑚DM = 0, the order of layers is inverted7. 

Note such conclusions make sense under conditions when the depolarisation is negligible, such as in thin biomedical 

samples10-14. 

 

 



 

Supplementary Figure S2. Four vectorial metrics that we used in the main article. (a) Metric 1 (M1) focuses on the difference 

between element m23 and m32, representing the existence of circular retardance. (b) Metric 2 (M2) focuses on the difference between 



K(𝑚FD
F +𝑚JD

F ) and K(𝑚DF
F +𝑚DJ

F ), representing the relationship between polarisance and diattenuation. (c) Metric 3 (M3) focuses on 

the difference between K(𝑚MF
F +𝑚MJ

F ) and	K(𝑚FM
F +𝑚JM

F ) representing the condition of multi-layered retardance. (d) Metric 4 (M4) 

focuses on the difference between element m14 and m41, representing the sequence of linear retardance and linear diattenuation.  

 
  



 

Supplementary Material 3: Stokes-Mueller measurement and decomposed parameters of a 

Mueller matrix. 

 

As the MM, its decomposed parameters and Stokes vector fields play important roles in this work, we give a brief 

introduction of the related measurement methods and the methods of decomposition. Supplementary Figure S3 shows a 

MM polarimeter using a dual-rotating wave plate method15. The polarisers (P1, P2; Thorlabs, LPVISC100-MP2) are 

fixed and similarly oriented. Two quarter waveplates (QWP1, QWP2; Thorlabs, AQWP10M-580) rotate with fixed 

rotational speeds, such that	𝜙D = 5𝜙F. The main measurement principle is shown in Eq. (3-1) and Eq. (3-2), where 𝑞 

represents the 𝑞ST measurement.	𝑀U@BV#W is the MM of the sample, 𝑀XD, 𝑀XF, 𝑀YZXD and	𝑀YZXF are MMs of P1, P2, 

QWP1 and QWP2, respectively. 𝑀U^_SWB is the equivalent overall MM of the system.	𝑆>? and 𝑆abS are incident and 

output Stokes vectors. Since the intensity is equivalent to the first element 𝑆c of the Stokes vector, we make	𝐼e = (𝑆abS
e )c, 

which represents the corresponding intensity of the 𝑞ST measurement. From Eq. (3-2) we can obtain the Fourier series 

(𝑎? and 𝑏? are Fourier coefficients, 𝜙D
e is the angle of QWP1 at the 𝑞ST measurement) and calculate the MM, detailed in 

Ref15. 

 

 𝑆abS
e = 𝑀U^_SWB𝑆>? = 𝑀XF𝑀YZXF𝑀YZXF

e 𝑀U@BV#W𝑀YZXD
e 𝑀XD𝑆>?. (3-1) 

 

 
𝐼e = (𝑆abS

e )c = 𝑎c +fg𝑎? cos(2𝑛𝜙D
e) + 𝑏? sin(2𝑛𝜙D

e)m.
DF

?oD

 
 

(3-2) 

 

The Stokes polarimeter can be used to calculate any SOP via the sequence of recorded intensities16. As we can find in 

Supplementary Figure S3, the detection arm – also referred to as the polarisation state analyser (PSA) – of the MM 

polarimeter is a complete Stokes polarimeter. This allows measurement of the Stokes vectors of the light field by 

rotating the QWP2 to four different angles, following a process described in Ref16. The principal equations for 

calculation of field are shown in Eq. (3-3), in which 𝑆>? is the Stokes vector of the incident light field, 𝑀X	and	𝑀YZX
? 	are 



MMs of the corresponding polariser and waveplate, respectively. 𝑆abS? 	is the corresponding output Stokes vector for the 

𝑛ST fast axis orientation of QWP2. 𝑀YZXF
? 	is the MM of QWP2 for the 𝑛ST fast axis orientation. 𝐴 is a n×4 matrix 

known as the instrument matrix17-20, which is derived from 𝑀X ∙ 𝑀YZXF
? . 𝐼 is the intensity information recorded by the 

camera. More practical derivations can be found in Ref17-20. 

 

  𝑆abS? = 𝑀X𝑀YZXF
? 𝑆>?,		(𝑛 = 1,2,3,4… ) 

 

 

𝐼 = 𝐴 ∙ 𝑆>?, 

 

𝑆>? = 𝐴qD ∙ 𝐼. 

 

 

 

(3-3) 

As we mentioned, a MM contains 16 elements, but the relationship between physical quantities and these individual 

elements is often ambiguous. Previous research has concerned the extraction of specific polarisation parameters from the 

MM to characterize the optical properties of the object. We introduce two widely used MM decomposition methods in 

this Note, and use different sub-set of them throughout this work. Even they are limited via different assumptions4,6, they 

can still be candidates for assessment of the performance of our metrics. For instance, in the section on biomedical 

analysis, we use retardance to compare and validate the performance of MM (see Supplementary Material 7). 

 

One prevalent method is the MM polar-decomposition (MMPD) proposed by Lu and Chipman4, which has been widely 

used and validated for characterization of biomedical and material samples. In the main article, we specifically use the 

retardance parameter (𝑅), which is suitable for analyzing complex turbid biomedical tissue; this has been applied 

previously in quantitative biological diagnosis11-14. The principle of MMPD is represented by Eq. (3-4), where 

M∆, Ms	and	Mt are the 4×4 sub-matrices of depolarisation, retardance, and diattenuation, respectively. 

 

 𝑀U@BV#W = 𝑀∆𝑀u𝑀v. (3-4) 

 



The retardance R is reconstructed from the trace of 𝑀u; while the orientation of optical axis of linear retardance 𝜃 (with 

respect to the horizontal axis) ranging from − w
F
 to w

F
 radians are calculated using Eq. (3-5). The diattenuation value D can 

be readily obtained from the second to the fourth elements in the first row of a MM, while depolarisation properties are 

included in the bottom right 3×3 matrix 𝑚∆ of the matrix 𝑀x, in which 𝜆D, 𝜆F and 𝜆J are the eigenvalues of	𝑚∆, and 𝑃 is 

a matrix composed of the eigenvectors of 𝑚∆.  

 

 
													𝑅 = cosqD {

tr(𝑀u)
2 − 1~, 

 

												𝜃 =
1
2 tan

qD �
𝑀uFJ −𝑀uJF

𝑀uJD −𝑀uDJ
�, 

 

 

 

 

 

(3-5) 

𝐷 = �𝑚DF
F +𝑚DJ

F +𝑚DM
F , 

 

			𝑚∆ = 𝑃 �
𝜆D 0 0
0 𝜆F 0
0 0 𝜆J

�𝑃qD. 

 

Arteaga et al. derived MM anisotropy coefficients (MMAC) to describe the degree of different kinds of anisotropy that 

might be present6. Intuitively, the parameters α, β, and γ from MMAC can be regarded as ratios of horizontal linear 

anisotropy, 45° linear anisotropy and circular anisotropy respectively with respect to the global anisotropy of the MM6. 

Among them, the circular parameter γ is used to directly reflect the existence of circular retardance, which is also used as 

an example to determine the existence of spin-Hall effect of light (SHEL)21. We use γ to validate the SHEL in a GRIN 

lens system as supporting evidence for using M1. The mathematical definition of the parameter γ with respect to MM 

elements is shown in Eq. (3-6). For a specific system, if the relative sign between dichroism and birefringence is known, 

the sign of the MMAC parameters γ can be determined as well. Details can be found in Ref6. 



  

 

Σ = 3𝑚DD
F − (𝑚FF

F + 𝑚JJ
F +𝑚MM

F ) + 2Δ, 

 

γ = �1
Σ
[(𝑚DM +𝑚MD)F + (𝑚FJ −𝑚JF)F], 

 

sign(γ) = sign(𝑚DM +𝑚MD ∓ (𝑚FJ −𝑚JF)). 

 

 

 

 

 

 

 

(3-6) 

 

Supplementary Figure S3. Schematic construction of the MM/Stokes polarimeter. P1, P2: fixed polariser; QWP1, QWP2: 

rotating quarter waveplate; a camera is used as the detector. Polarisation state generator (PSG) and polarisation state analyser (PSA) 

are shown in dotted boxes. 

 

  



 

Supplementary Material 4: Topological charge transfer analysis – from the point of view of 

angular momentum conservation 

 

It is widely appreciated that in a rotationally symmetric system, the spin orbital interaction (SOI) results in spin-orbital 

angular momentum conversion (SOC), which normally generates vortex beams22. In a system with broken symmetry, the 

SOI process leads to the spin-Hall effect of light (SHEL), which is directly related to the occurrence of circular 

birefringence (CB) gradient21,23. A GRIN lens has a spatially variant linear birefringence whose fast axis has an 

azimuthal distribution. It can be treated as a spatially variant waveplate array18,19,24. In this work, we break the symmetry 

of the polarisation aberration of a GRIN lens system by applying collimated, oblique illumination, which experiences a 

different birefringence to an on-axis beam. Within the numerical aperture (NA) of the GRIN lens, the level of SHEL is 

determined by the incident angle.  

 

There are various methods to validate the SHEL, such as standard quantum weak measurement methods, Stokes vector 

analysis, or MM analysis21,23,25. The previous two are not suitable for the validation of weak SHEL with complex 

polarisation modulation, which can be induced by complex Pancharatnam-Berry (PB) phase gradient across the beam 

transverse plane. Hence, the MM and its decomposition parameters provide unique advantages21. They have been used 

previously for mapping the complex topological structures of the fast-axis orientation of various crystals and validating 

the appearance of SHEL21,24. 

 

Here, we demonstrate the SHEL through illuminating a long GRIN lens (Femto Technology Co. Ltd., NA=0.25, 184mm) 

via an oblique incident angle. Supplementary Figure S4 shows the experimental sketch; the incident angle Φ is between 

5° and 10°, with a 1° increment. We measure the full polarisation properties of the GRIN lens through obtaining 

different MMs for different illumination angles. We then calculate the MMPD and MMAC parameters to analyse the 

intrinsic mechanism of the related SOI processes. This procedure also acts to validate feasibility for the usage of M1 for 

identification of SHEL. Figure S5 shows the results of different MMs (see Supplementary Figure S5a), different 

retardance values (see Supplementary Figure S5b) and spatially variant fast axis distributions (see Supplementary Figure 



S5c), which are derived from the measured MMs. Note when a tilt is applied, the rotational symmetry of the 

birefringence distribution is broken (manifested in Supplementary Figures S5b and S5c). 

 

The SOI process can be understood from the point of view of angular momentum (AM) conversion. In any complex SOI 

process in crystals, several topological patterns holding different topological charges are used to assist the descriptions of 

their AM conversion process – such patterns include the lemon, star, spiral, and node21. Suppose we have a right hand 

polarised photon that carries total AM (TAM) J = +1ħ, consisting of spin angular momentum (SAM) σ = +1ħ and OAM 

l = 0ħ. When it passes a GRIN lens, the interaction in the node topological area in Supplementary Figure S5c converts 

SAM handedness of the photon into σ = -1ħ. The TAM is changed by a SAM induced factor +2ħ, where the SAM 

completely transfers to an intrinsic OAM (IOAM). This would significantly change the SOI process, since there exist 

three different topologies rather than a pure node topological pattern. From Supplementary Figure S5c (when the 

incident angle is 9°) we could clearly find two lemons (red circles), a node (green ellipse), and one linear gradient (black 

rectangle) at the intermediate region. For the node region, the SOC performance is discussed above. For the lemon 

regions (which are newly formed), they would gain an IOAM of +1ħ. So, considering the whole field, due to the TAM 

conservation mechanism, the remaining +1ħ is expected to transfer into the medium – which is also comparable with the 

SOI process in KDP21. The linear gradient areas (black rectangle) are not associated with any azimuthal/radial coordinate. 

For such a beam-field, the photons passing through this region would neither obtain IOAM nor involve any SOC. Hence, 

from the point of view of AM conservation, such a region could contribute to extrinsic OAM hence validating the 

existence of SHEL. 

 

The level of SHEL is quantified via γ at different illumination angles. The process is as follows: 1) we chose three fixed 

concentric circles on the GRIN lens surface (shown in Supplementary Figure S6a with dotted rectangles) near the linear 

gradient region; 2) at every angle, we obtained the data from the absolute value of γ of the three rectangles; 3) we 

calculated the mean value and standard deviation through statistical methods26; 4) we collected data from different 

angles and formed the Supplementary Table S1 and Figure S6b, which show that γ increases with incident angle. To the 

best of our knowledge, this is the first report of SHEL in a GRIN lens system, as revealed via MM analysis. As the 



GRIN lens still maintains its basic function as an imaging lens, there exists potential that the GRIN lens can combine 

imaging and SHEL detection.  

 

 

Supplementary Figure S4. Sketch of GRIN lens oblique illuminated by collimated light beam. The incident angle Φ was varied 

between 5° and 10° as MMs were recorded. 



 

Supplementary Figure S5. Experimental results of MM and decomposed parameters under different illumination angles. (a) 

MMs of GRIN lens with different angle; (b) retardance properties of the GRIN lens; (c) fast axis properties of the GRIN lens. They 

are demonstrated at incident angle Φ of 5°, 7° and 9°. The green circle, red circle and black box rectangle represent different 

topological charge units. 

  



 

Supplementary Table S1. Circular anisotropy coefficient (γ) value under different illumination angles 

 

 

 

5°  6°  7° 8° 9°  10°  

Mean value 0.083 0.128 0.133 0.166 0.209 0.234 

Standard 

derivation 

0.021 0.026 0.018 0.024 0.025 0.019 

 

 

Supplementary Figure S6. Parameter γ extracted from the measured MMs. Value of parameter γ extracted under different 

illumination angles. (a) The three fixed rectangle regions chosen from same physical locations on GRIN lens surface for γ value 

estimation for each determined illumination angle. (b) The solid yellow circle points and the red error bars represent the mean values 

and the standard deviation of the γ of three rectangles that were measured at every illumination angle. 

 

 

 

 

 



 

Supplementary Material 5: Direct laser writing of photonic waveguides  

 

Direct laser writing was used to manufacture the photonic waveguides that were studied through metric 2 in the main 

article. The waveguides were written inside fused silica (Schott Lithosil Q0) with a tightly focused ultrashort pulse laser 

(Yb:KGW laser, Light Conversion Pharos SP-06-1000-pp; 1 MHz repetition rate; 514 nm wavelength; 170 fs pulse 

duration). The laser was focused 300 µm below the top surface of the glass with a 0.5 NA objective lens, and its power 

was controlled by a rotating half waveplate in conjunction with a polarisation beam splitter (PBS). A liquid crystal 

spatial light modulator was used to compensate system and sample aberrations encountered during processing, as 

described in Ref27,28. The fused silica chip was mounted on a 3-axis precision translation stage (Aerotech 

ABL10100L/ABL10100L/ANT95-3-V). Waveguides were written by scanning transverse to the optic axis at a speed of 

2 mm/s. The writing pulse energy was measured in situ at the sample plane, with six values of 35nJ, 42nJ, 50nJ, 58nJ, 

67nJ, 75nJ, which were used in the analysis in the main article. 

 

In case 2 in the main article, the value of M3 indicated the existence of a multi-layered linear retarder assembly. It is 

known that retardance is induced here through scattering and intrinsic stress, so the information we extract is only 

indicative of average waveguide performance. However, such an approach also presents new possibilities for an 

optimized fabrication process; e.g., if the value of M3 vanishes through changing the writing parameters, it may prove to 

be suitable for feedback control, showing an overall retardance performance inside the complex waveguide. In 

polarisation optics, matrix reciprocity always exists in a multiply layered system, and hence leads to different 

polarimetric properties observations when flipping the specimen1-3. Since the asymmetric MM elements were observed 

in main article for waveguides under the above writing parameters, we also wrote identical waveguides bi-directionally 

to test this hypothesis (see details in Supplementary Figure S7a). The linear retardance value of those waveguides was 

decomposed and is shown in Supplementary Figures S7b and S7c for the six different pulse energies. The results are 

symptomatic of the quill effect29,30, where the laser induced structural modification inside an isotropic material is 

different when reversing the writing direction. Here we additionally confirm the directionality in the fabrication from a 

polarisation optics standpoint (compared with existing methods29,30) using the different small retardance values that are 



provided via MM images. The same laser writing parameters lead to different linear retardance for opposite writing 

directions. The statistical estimation approach is shown in Supplementary Figure S7e; we chose three fixed circle regions 

within the aperture (shown in dotted circles, data collected within the circular 2D regions) for statistical approach refer to 

Ref26. Note the waveguides were written in opposite directions but measured in the same orientation; the sample 

orientation was also flipped in testing for the quill effect.  

 

To the best of our knowledge, it is the first time that the quill effect (and the corresponding trends) in direct laser written 

waveguides has been investigated from the point of view of the asymmetric information and decomposed polarisation 

parameters from the MMs. Note here that we used MMPD methods to extract the linear retardance simply for validation 

and comparison, but bear in mind the complex intrinsic isotropic/anisotropic scattering-induced vectorial manipulation 

for the beams are still to be explored – as it would affect the intensity loss and polarisation independence as well, in 

conjunction with the effects from the stress induced retarders. There is intriguing scope for future work. 

  



 

Supplementary Figure S7. Two direct laser writing cases with different writing directions. (a) and (b), sketches for the two cases. 

(c) and (d) the measured linear retardance for the two direction cases with different writing powers. (e) Regions chosen for statistical 

analysis (data within three fixed dotted circles were used in the plot of the value of various polarisation properties for illustration). 

Taking retardance as an example, as in (c), the mean value of the dataset is shown by the solid pink circle points, while the transparent 

pink regions represent the standard deviations. 

  



 

Supplementary Material 6: Monte Carlo simulation of intrinsic waveguide optical processes  

 

The waveguides were written in fused silica, which has no inherent polarisation properties. Hence, the polarisation 

modulations that were observed are due to material changes induced by the direct laser writing process30-32. Previous 

studies have validated that nano-structures33-39 can be formed in such processes inside fused silica, and that the optical 

properties change with laser pulse energy (and other parameters), as does the related scattering. Considering that 

anisotropic scattering and the isotropic scattering both exist in the waveguides, for a better understanding of the 

experimental results, we carried out Monte Carlo (MC) simulation10,40,41 with a sphere-cylinder birefringence model 

(SCBM) to simulate the interactions between polarised photons and the nano-structures of the waveguide. In the SCBM 

model, the spherical and infinitely long cylindrical scatterers can provide isotropic and anisotropic scattering effects, 

respectively. Previous studies have also indicated that the anisotropic scatterers can generate linear diattenuation 

(anisotropic absorption)10, which can be extracted quantitatively using MM elements. To study the propagation of 

polarised light in a waveguide, during the MC simulations the scattering coefficients, refractive indices, sizes of both 

scatterers, the orientation and angular distribution of the cylindrical scatterers, together with the value and fast axis 

orientation of birefringence for interstitial medium can all be adjusted. Here in this study, the following simulation 

parameters were used: a two-layered medium (case 1 in Supplementary Figure S8), four-layered medium (case 2), six-

layered medium (case 3); case 2 and case 3 have periodic double-layered medium in case 1, which fit the periodic 

structure that occurs inside the waveguides35-37. The thickness of overall layer was 13.6 mm to match the fused silica 

sample that was used in the experiment. In each double-layered structure: layer 1 consisted of well-ordered cylindrical 

scatterers with scattering coefficient and size 1 cm-1 and 0.01 μm, respectively; the cylinders were distributed along the 

X axis direction with 5° fluctuations. Layer 2 consisted of spheres and birefringent interstitial medium, the scattering 

coefficient and size were 15 cm-1 and 0.3 μm, respectively; the value and fast axis orientation of birefringence were set 

to be ∆n=0.002 and 0°, respectively.  

 

Supplementary Figure S8 shows the MC simulated results, which contain polarisance as well as diattenuation and 

retardance. Such phenomena can also be explained via a layered structure model: scattering-induced depolarisation, 



followed with a scattering-induced diattenuator, see Supplementary Figure S8a. From the simulated results shown in 

Supplementary Figure S8b, we can observe that with the direction of cylinders changes from 0° to 180°. For each case, 

the value fluctuations of m12 and m13 are more prominent than those of m21 and m31, indicating that diattenuation is more 

dominant than polarisance for these cases. Meanwhile, the values of m42 and m43 are also larger than those of m24 and 

m34, showing the existence of layered linear retardance.  Supplementary Figure S8b demonstrates different numbers of 

the layered structures consisting of the units shown in Supplementary Figure S8a, which mimics the periodic structure 

that occurs inside the waveguides, as mentioned before.  

 

The MC simulation built a link between the measured data of the waveguides as well as the possible polarisation 

properties models. Given the amplitudes and trends of the elements in M2 and M3 using MC simulation, we also 

validated the usefulness of our vectorial metrics. 

  



 

 

 

Supplementary Figure S8. Monte Carlo simulation for the optical properties of the waveguides. (a) The model of a linear 

diattenuator and a depolariser (isotropic and anisotropic scattering induced), as well as a multi-layered retardance geometry. (b) 

Azimuthal dependence curves of the MM elements for SCBM. All the MM elements are normalized by m11. Cases 1 to 3 consist of 

different layered structures, as explained in the text.  



 

Supplementary Material 7: Data acquisition, data processing, and statistical analysis for non-

small cell lung carcinoma 

 

Lung cancer is one of the most commonly diagnosed cancers, and accounts for more than 20% of all cancer deaths 

worldwide42. Clinically, non-small cell lung carcinoma is the primary form of lung cancer constituting about 85-90% of 

all lung cancer cases43,44. Fibrous structures of the extracellular matrix play an important role in the development of non-

small cell lung carcinoma tissues since they provide strength and cushioning45,46. Recent studies showed that the 

proportions and distribution of such fibrous structures are different between normal and cancerous lung tissues45,46. 

These differences can be identified with hematoxylin and eosin (H and E) staining. However, for quantitative and 

accurate evaluation of detailed structural changes of fibrous structures in non-small cell lung carcinoma tissues, MM 

microscopic imaging was used in this study. Here we selected five 12-µm-thick non-small cell lung carcinoma tissues 

slices for demonstration. For pathological comparison, the corresponding 4-μm-thick H and E stained slices were also 

prepared. The sample selection and preparation were performed by experienced pathologists. The age range of the 

patients was from thirty to fifty-five years. This work was approved by the Ethics Committee of the Shenzhen Second 

People’s Hospital. 

 

Measurements were taken using a conventional MM microscope and the retardance was derived via MMPD, a method 

that has been used for cancer differentiation in various works11-13. We selected 10 points per region; 2 regions were 

chosen from a sample, one containing normal and one containing cancerous tissue. The statistical analysis followed the 

approach of Ref26 (Supplementary Figure S9a). The field of view (FOV) of the MM microscope was 0.77 mm2 and its 

calibrated precision was lower than 0.3%. We calculated the mean value and standard deviation of the retardance across 

the same areas to set as ground truth for comparison with the absolute value of metric 4. Example MMs, as well as 

corresponding MMPD parameters, M4 value from healthy or cancerous tissue and quantitative statistic histograms are 

illustrated in Supplementary Figure S9. 

 



Supplementary Table S2 contains the data measured by two parameters as well as the corresponding P-value, which 

shows the significant difference between the two classes of samples. Considering the original data distribution and the P-

values of either individual samples or the overall combination, it can be found that the metric 4 is able to distinguish 

efficiently between healthy and cancerous tissue. To make the process more efficient and precise, further detailed error 

analysis and corresponding optimization will be the subject of further work. 

  



 

Supplementary Figure S9. Demonstration of original MMs, decomposed parameters, value of metric 4 and statistical 

histograms of healthy and cancerous lung tissue. (a) MMs and related parameters – alongside with the value of linear diattenuation 



(LD), linear retarder (LR), metric 4; Note the scale used for LD, LR, and M4 has been amplified by a factor of 4, 5 and 20 for better 

visualisation26. (b) Statistical histograms of some samples (note here we use the absolute value of metric 4). Gray dotted lines 

represent the standard deviation. 

 

Supplementary Table S2. Value of retardance and metric 4 of the samples used in this work 

(Retardance: /101; M4: /103) 

 

 Slide 1 (H1 and C1)  Slide 2 (H2 and C2)  

Healthy Cancerous Healthy Cancerous 

mean 

value 

standard 

deviation 

mean 

value 

standard 

deviation 

P- 

value 

mean 

value 

standard 

deviation 

mean 

value 

standard 

deviation 

P- 

value 

Retardance 3.78 1.56 16.22 4.23 <0.001 4.51 1.42 19.31 5.02 <0.001 

|M4|  0.39 0.21 2.84 0.77 <0.001 0.32 0.09 3.75 0.86 <0.001 

 Slide 3 (H3 and C3)  Slide 4 (H4 and C4)  

Healthy Cancerous Healthy Cancerous 

mean 

value 

standard 

deviation 

mean 

value 

standard 

deviation 

P- 

value 

mean 

value 

standard 

deviation 

mean 

value 

standard 

deviation 

P- 

value 

Retardance 4.56 1.39 15.73 3.97 <0.001 2.24 0.82 17.55 3.34 <0.001 

|M4|  0.42 0.19 3.13 0.89 <0.001 0.24 0.11 2.92 0.93 <0.001 

 ...  Combination of all slides  

Healthy Cancerous Healthy Cancerous 

mean 

value 

standard 

deviation 

mean 

value 

standard 

deviation 

P- 

value 

mean 

value 

standard 

deviation 

mean 

value 

standard 

deviation 

P- 

value 

Retardance … 3.39 1.15 17.31 4.07 <0.001 

|M4|  … 0.29 0.13 3.29 0.82 <0.001 

  



 

Supplementary Material 8: Monte Carlo simulation for double-layered system 

 

As shown in the Fig. 4d in the main article, as well as Supplementary Material 2, the zero or non-zero values of m14 or 

m41 represent different layered structural information of tissues. Previous studies have demonstrated that such layered 

structures exhibit different linear diattenuation and retardance properties7,8, which may be helpful for biomedical 

measurements. Here, for a better understanding of the experimental results, we carry out MC simulation40,41 with a 

cylinder birefringence model (CBM) to simulate the interactions between polarised light and the fibrous structures of 

tissues. In the CBM model, the infinitely long cylindrical scatterers can provide similar anisotropic scattering effects and 

linear diattenuation to that generated by the tissue fibers. During the MC simulations the scattering coefficients, 

refractive indices, sizes, orientation, angular distribution of the cylindrical scatterers, and the value and fast axis 

orientation of birefringence for interstitial medium can be adjusted. Here in this study, the simulation parameters were 

set as follows. For the two-layered medium, the thickness of both layers was 0.006 mm; for the layer consisting of 

scattering cylinders, the scattering coefficient and size were 200 cm-1 and 0.05 μm, respectively; the cylinders were 

distributed along the X axis direction with 5° fluctuations; for the layer of birefringent medium, the value and fast axis 

orientation were set to be ∆n=0.002 and 22.5°, respectively. 

 

Supplementary Figure S10a gives three cases that we simulated in this section, which represent different morphologic 

geometries in such human lung samples. From the simulated results shown in Supplementary Figure S10b we can 

observe that the m14 and m41 elements show asymmetric properties, especially for cases 2 and 3, in which the value of 

m14 (or m41) has a more prominent fluctuation than that of the m41 (or m14) with the direction change of cylinders. For the 

medium in case 1 combining cylinders and birefringence in the same layer, this asymmetric property occurs in both 

elements. Meanwhile, other MM elements of such a two-layered medium are symmetrical. 

 



 

Supplementary Figure S10: Monte Carlo simulation for the optical properties of a biomedical sample. (a) The model of case 1 

(mixed-layered geometry), case 2 (first layer: linear retarder, second layer: linear diattenuator), as well as case 3 (first layer: linear 

diattenuator, second layer: linear retarder). (b) Azimuthal dependence of the MM elements for CBM. All the MM elements are 

normalized by m11.  



 

Supplementary Material 9: More vectorial metrics derived from the Mueller matrix  

 

The four previously introduced metrics (1, 2, 3 and 4) are based on analysing the asymmetric or symmetric properties of 

the MM images; these could be referred to as “difference metrics” that have the form (X-Y), where X and Y are each 

MM elements (or combination of elements). The new proposed metrics (metric 5 in the discussion) could be defined as a 

“ratio metric” in the form (X/Y) where X is the MM element (or combination of elements) that can be expected to be 

near-zero; Y is a reference value derived from the element m11.    

 

Through exploration of various cases, we can categorize the different metrics according to the unified map in the figure 

(Supplementary Figure S11a). We mainly present three general types of metric in the note: element-wise, column/row-

wise and block-wise. Specifically, for block-wise, as the MM is a 4 x 4 matrix, the sub-block would be an n x m sub-

matrix (1<n, m<4). Where one metric belongs to above categories. To form a new metric, we may choose any 

combination of elements; we do not need to be restricted to symmetrically opposed elements (see Supplementary Figure 

S11a). 

 

Some new vectorial metrics are defined in Supplementary Figure S12, which additionally reveals six potential metrics 

(metric 6 to 11) beyond the ones that have been explained in the main article. Supplementary Figure S13 shows two 

pairs of GRIN lens cascades with theoretical and experimental data as validation examples. These cases have been 

illustrated using a spatially variant half-wave plate array (SVHWP) based GRIN lens cascade24; their MMs and certain 

vectorial properties are shown in Supplementary Figure S14. Here we provide just a brief illustration of the possibilities 

for other metrics that can be further developed within the scope of Supplementary Figure S11a.  

 

We then give a brief summary in Supplementary Figure S11b about the functionalities of the vectorial metrics that 

appeared in this paper. They can act as indicators to 1) reveal information of complex optical systems (e.g., metric 1-5); 

2) optimize operation such as a feedback metric for control purposes (e.g., metric 2, 3 and 5); 3) suppress values in the 

MM (e.g., metric 6 to 11, maintain various elements whose absolute values have been suppressed). The third 



functionality, which is revealed here, may provide an intriguing possibility to edit the presence of a particular physical 

property, or do vectorial coding/decoding of the MM itself via its sixteen elements. The overall picture shows the 

opportunity for further investigation of such vectorial metrics. 

 

  



 

Supplementary Figure S11. Vectorial metric information from MM images. (a) The picture gives an overview of different 

categories of the information extraction from the MM vector images. (b) Three characteristics of the vectorial metrics. 

 



 

Supplementary Figure S12. Six additional proposed metrics. For metrics 6 to 11, they are illustrated using MMs of different GRIN 

lens cascades. The metrics belong to the different types mentioned in Supplementary Figure S11. All MMs are normalized as a ratio to 

m11.  



 

 

 

Supplementary Figure S13. Validations between simulated and experimental MM data. Sketches of (a) proposed metric 6 and (b) 

its modified format (proposed metric 6’; which belongs to “ratio metric” with zero-valued one element) show the corresponding 

GRIN lens cascades. Simulations and experimental MM data are presented. 

 

 

 

Supplementary Figure S14. MMs and generated vector beams of GRIN lens and SVHWP. MMs and vector beams generated via 

GRIN lens and SVHWP are given, the input polarisation states are also shown in the figure. 

 

 
 


